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ABSTRACT

It is shown that a considerable saving in computing time can be
obtained by the use of unconditionally stable, or implicit, finite
difference approximations to the radiation diffusion equation. The
effectiveness of implicit difference equations depends on the existence
of rapidly convergent iteration procedures for solving the non linear
system of equations which determines the temperature distribution at each
time step. We show by application to some typical situations that
Newton's method provides such a procedure. Although Newton's method can
be difficult to apply when the functions appearing in the equations are
tabulated, this is not the case for radiation diffusion with tabular
opacity and energy; for, the flux is defined as an integral whose deriv=-
ative involves only values of the opacity, and the tebulated energy can
be replaced by a continuously differentiasble function of temperature by
the use of the spline fit. The same holds true with interfeces and var-

ious boundary conditions.
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Chapter I

The distribution of temperature, T, in a diffusing slab can be

described by a differential equation of the form

(1) g% = - gg +H
where
E = E(x,t,T)
F = F(x,t,T, g-)TE)
H = H(x,t,T) .

For our purposes we may take H = O. For the moment we do not specify E

and F.
We suppose the slab to be divided into cells with centers xj and

lengths A We sgt E(xj) = Ej’ F(x,j+l/2) = Fj+l/2' For any function

J.
F(t) we write T = £(t), £ = £(t + At).

A one parameter family of difference approximations to (1) 1is

= 4 0Ot N = =0 =
(2) =, -E, +ZE- (Finfp = Fyaafe) ¥ (1 -0) 5, (Fiar/p = Fyp/e) =0 =D

where O = @ £ 1l With @ = 0 we have the ordinsry explicit difference

equation which has a stability condition of the form



A—: s r(TJ) for all

3
for some function r(T) which can be determined for E and F.

Although the explicit method is satisfactory for most problems, the
following situation can occur. Suppose a wave is penetrating the slab
with velocity ve Then there will be a number s such that if At/Ax® < s ’
then vAt < Ax, so that one would like to take At not much less than sAX®.
However, there may be a region far from the head of the wave in which
r(t) is much smaller than s » forcing a time interval much smaller than
needed for accuracye It is here that an unconditionally stable method
is called fore

It can be shown, at least if E and F are linear, that (2) is uncon-
ditionally stable if % sa =1 [1]. In this case the new temperatures
T 3 eppear in a complicated way and can only be obtained by an iteration
such as Newton's method, which has the following form: to solve the

system

DJ(T1’°'.TN)=O’ J=1,2,...,N

use the following algorithm.

&) Guess a first vaelue for TJ

b) Define AT, as the solution of the linear system

J

ZijATk = - D,

<l



where

oD
(3) Gy = a,—i-

and all coefficlents are evaluated at the previous iterate T 3
(c) Replace T; by T 3 + AT 3 and repeat (b) until convergence occurs.e

Since, as we shall see, the fluxes F depend only on T, and

Jt1/2 J

T 412 (3) has the form

() AT TRLTy T P T - Dy

where
A = oD, _ ot a%_-1/2
oM 8y Ty
oD, OE
_Dy 9By ant D
GY Bycwm v tE] o Faaje T Taa]
. =8DJ _ . oAt BFJ+1/2 .
J Ty Ay iy

The linear system (4) is solved by the following well-known device:
put

(6) ATy =MAT, | FN, .



K

Substituting this into (L) we find

A -D. -C N
+
N 1

(7) M, = -——-——-—-j——— ’ . =
J o Byt O d By T M

The M's and N's are determined by (7) and the boundary condition et

xl\T+l/2° For example, if FN+1/2 =0

Ay Dy
2 e N, = o
MN BN ? N BN ?

and then (7) is used recursively. A boundary condition at the other end,
say AT, = 0, together with (6) then determines the AT 3
To apply the above ideas to the diffusion equation, let

E(T) = B (T) + %T‘*

p=.8clor
3 K ox
where
Em = gpecific material energy
a = Stefan-Boltzmann radiation constant
= density
K= K(T,x) = opacity

c speed of light

Note that x is the mass variablee

-




The discrete flux Fj+1/2 is defined as a mean value by the follow=-

ing relation,
A, +A J+l 4
J J+ ac 1 4ar
(8) - Fyerfe = f SRa &
x

We now make two assumptions:

a) K is a function of T only in the intervals [xj, xj+l/2]’

[xj+l/2’ xJ+l]’ so we write

KL(T) X,Sx s X141/

Cae
[

SX=sx

i
H
Ng”
»

o

£

N
|

J¥l

b) T(x) is monotonic in the interval (xj, xj+l)'

With these assumptions the right side of (8) can be written as

L1/ Ti41
Q =f PL(T)d.T +j e (T)ar
T Tj+l/2

where we have introduced the function of the opacity

9  plem) =2

Then
oT oT
R j+1/e j+1/2
= pL(TJ+l/2) W‘L + PR(TJH_) - pR(TJ+l/2) . .

gL Jtl g+l

7=



The temperature T 341 /2 can be determined from a continuity condition

on the flux; namely

T T

. J*¥1/2 3L
= 2
(T, )-—f p AT = —S— pAT =0 .
yr/2’ A, L Y, R
T Tyt1/e
The function g is monotonic and has & root between T and T SHL which

can readily be found by Newton's method or it can be found in the sweep
defined by equations (4), (6), and (7).

We now have

Zynfe BTy )25
Tyrr Pl fellBy ¥ BTy o)A

so that

2 Bp(Tyspy) P(T 4y 1))

AJPRTTJ+1/2) + Aj*‘lpL(T,j-l'l/QI

Similerly

BTJ AJPR(TJ'*'l/Q) + A,j+lpL(Tj+l/2T

-8~



and we see that (10) and (11) are independent of % .

OE
Let us now consider 2 e« For many problems E = C T, C._ constant
o m v’ v ’

OF
s0 fo_n. = Cv‘ All our test problems are of this forme In running these

problems we noticed that small errors in % slowed down the convergence
of the iteratione This leads us to believe that if Em(T) is a tabular
function it is important to use an interpolation process which produces
good. derivativese. Such an interpolation is provided by the spline fit
[2], which involves replacing Em(T) by a piecewise cubic function which
has continuous first and second derivatives. This is done as follows:

let the tabulated values be E, = Em(Tk) k=0,1) ¢« ¢« o , I, and let

Ek = Tk - Tk-l' If we let
(aZE )
m =M
EEE T = Tk

be the second derivatives, which are to be determined, then the pilece-

wise cubic is

_ M _, (T, -T)° M (7T, _,)° B, ML
BT — . — "\ -%) On)
2
+(E§;l - Mk'él k) (T -T) , for Teg STST, o

If we equate left and right values of first derivatives we get the




relation

£ b v 4 herierr BB BBy
k k "~ Y1 K+ K+l +1 -1
(12) e Mgt T T Ty &,

If we specify a condition at the end points TO and TI such as

M, = M._[ = 0, or specify the first derivatives, then (12) determines Mk’
0 OE_

from which Em(T) and g can be computed. Thus, in addition to the
table [Ek] we need to compute (once) and store the table LMk]. An

example of the spline fit for a typical Em('l‘) is given in Chapter III.
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Chapter IT

We have applied the method to the problem of solving for the pene-
tration of radiation through a uniform slab with a constant driving
temperature at one boundary of T = 1.5. The material has unit density
with an opacity given by 100 T-4. Equal mass zones of unit thickness

were chosene. The differential equation to be solved is

d 4y _ a2re
(13) go (1T + 20157 T*) = + .00685 -

with the boundary condition that at x = 0, T = 15 and T = 0 for x> 0
at t = Q.
For the case @ = O in equation (2) we have the explicit equations

which are stable for

0.0685 (817At) <%

or AT < «053

We have solved the difference equation for o = 1/2 and ¢ = 1 for
At = 40625, «25, 1, and 10. In some cases we have dropped the radi-
ation energy term, 0137 T"', 50 that we can compare with the similarity

solution [3]e The solution compares very well for At = 1 as can be seen



by the comparison at t = 100 in figure le There was very little differ-
ence in the centered implicit (o = 1/2) and full implicit (o = 1) solu-
tion everywhere except at the head of the wave where the full implicit
temperatures are slightly higher.

Even for At = 10 the solution is in good agreement with the true
solution although the centered implicit is seen to have an oscillation
in the first mass pointe This oscillation is removed by going to the
full implicit equation. A comparison at t = 30 is tabulated in Table I
and shown in figure 2. The total number of iterations to g0 to t = 30

for various Atl's is:

At 0625 25 1 10

Iterations %0 270 1ok L5

The amount of calculation per iteration is roughly 2 times the

calculation per time cycle in an explicit calculation. Since the number
of time cycles in t = 30 is 600 it appears that the implicit method is
faster for At as low as «25 and 1s quite accurate for At = 1. For

At = 10 we gain only a factor of two in speed over At = 1 which doesn't
appear worth while considering the inaccuracies introduced. On the other
hand the results are not unreasonable for At = 10 so one need not worry
too much if for some reason the At is too large in a region of some

problem being considered.

]



The second problem consists of a slab of two materials, the first
having a 74 dependence in the mean free path and the second having a
constant mean free path. The initial and boundary condition and the
zoning are the same as before.

The differential equations in the two regions are:

d

2
(14) gz (1T + 0137 T7%) = + .oo685‘§i, 0<x<10;
d 4 g2r
R(.1T+.0137T)=+3.ll-25 5, 10<x <20 .

Again we have varied o and At, and the results are compared in

figure 3 and table IT for t = 60. We see that the full explicit solution
is well behaved for large At as before. Although we have no similarity
solution to compare with for this problem we feel that the full implicit
treatment is probably better since it appears to have the same solution
as the centered implicit for At = 1 and it doesn't have disturbing oscil~
lations for large Ate. We have used coefficients A, B, C that are only
half the right value (but the right sign!) to solve for D in equation (4).
We converge to the right solution but it takes about 10 times as many
iterations so we conclude that it 1s important that the exact derivatives

be used in equation (4).
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Chapter III

Thus far we have considered the equation using only simple functions
of the temperature. In practice this is rarely the case, so we wish to
indicate a method of attack that uses tabulated values of the energy and
opacity. The known properties of these functiohs will be exploited to
provide accurate values of the energy and its derivative, and the opacity
and its integrale. We first treat the energy.

In a wide variety of problems where radiation flow is important the
material energy is only weekly dependent upon the density so that a
linear logarithmic interpolation of the density variation will yield
satisfactory values of the energy at intermediate points. The tempera-
ture interpolation will be done by the spline fit mentioned in Chapter I.
We shall fit the spline fit to tabulated values of log Em(Tk) « The
logarithm is used since we treat Em over five decades in Te The deriv-

ative of E with respect to T is
(15) c,=E-EdlogB

We show the spline fit for & typical material in figures 4 and 5.

For most materials a table of about 150 points is sufficient to

-1l



cover the full range of temperatures and densities encountered in most
problems. This means, of course, that 150 values of the logarithm of
the energy and 150 values of the second derivative must be tabulated.
Opacity

The opacity could also be treated in the same manner. However, the
opacity or its related function, p, defined in equation (9), is used in
an integral over a fairly small range of the temperature, so that the
logarithm of p can be fitted quite well by linear interpolation and p
integrated analytically. Furthermore, the density variation of the
opacity is usually small so that again a logarithmic interpolation yields
satisfactory results.

Since the density dependence of the opacity is small (usually
vaerying as the one quarter power) we can simplify equation (11) for two

adjacent zones of the same material. In that case KL = KR so that

+2 p(TJ)

¥ ’
Aj Aj+l

(16) dFJ*l/g =

d‘I‘j

and equation (8) for the flux becomes

-2 J*L
Ty/e TR FAL, p(mlar
T.

J

where we use the average density of cells j and jtle. This is generally

accurate except for interfaces between materials where the density and
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material properties are discontinuous and equations (8), (10), and (11)
must be used.
The function p(p,T) will be given at a set of points (pi, Tk)° For

any fixed p; We assume that log p 1s a polygonal function of log T, that

is

7 \ %ik
(17) plp,,T) =, (ﬁ) for T, STST, .
where

Py = p(pi,Tk)

o = 1og p;, - log by oy

ik log Tk - log Tk+l

The logarithms of P,y are tabulated.

With p(p,T) in this form we have for T, ST £ T

k K+1
T - 'I‘p(pi,T) - TPy
pleg,Thlar! = o, F I y
ik
Ty

For any two temperatures 61, 62 with el < 62 we find integers j and k
such that

s [ ] L] L = °
Tk s 91 < Tk+l < < Tj s 92 < Tj+l

~16-



Then
‘ 0 T 0. plp.,6.)
p. - Pip.»
_ T ktl i, kLl 1 i’71
(18) J P(pi,’I‘)dT = =T
ik
el
+ z ; Tr Pip - rI.r-l pi,r-l
a + 1
r=k+2 r-1

Free Surface Boundary Condition

Let I(p.) be the intensity of radiation per unit solid angle in the

angle whose cosine is p. In the diffusion approximation

_ac 4 ac 1 ar*
=g T v § &

for ~ 1 = u =1, except at the surface s, when
I=0forpu<o
ac .4 ac 1 d4r*
I=ZE-T -uqﬁd—x—-forp>o °

Then the flux at the surface is

1 1
- - ac 4 1 ar*
F—2nf1u@~2f(T -pde)udp
-1 o)

ac ac 1 ar*

=TT:"6'(K &") .
X =59
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On the other hand, at an interior point

1 4
Plx) = - % 2 = .

Q

If we assume lim F(x) = F_, then
X s 5

8._C4+§-£ .'1'.__._dT4 =
) gr+¥ (3 E o

Note that if the flux is constant and equal to F, then
= 8C 4
(20) F TS .

In our difference approximation we assume the flux is constant in
the last half zones Thus, (19) becomes

T

s
ac 4 2 =
(21) -é- TS + ZS-I f Pl dr 0] °

Ty

Equation (21) can be solved for the surface temperature T by
Newton's method or in the sweep defined by (4) and (6).

The flux derivatives are

(22) iiﬁ ) 2acf1'3S pl(Tl) aF o
aT P, (T ) ? ’
1 1'"s
—_——— ac’I’a
Al s

so that Al = 0, or Ml =0 and.ATl = Nl'

-18-
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COMPARISON OF SIMILARITY
SOLUTION WITH CENTERED

IMPLICIT  DIFFERENCED
SOLUTION FOR AT=10
€=.06536 (j-4) AT t=100

SIMILARITY SOLUTION
© © DIFFERENCED SOLUTION

Figure l.
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COMPARISON OF CENTERED

IMPLICIT AND FULL IMPLICIT
DIFFERENCING FOR AT =I

AND AT=I0
t=30 SEE TABLE |

AT=| CENTERED IMPLICIT
—=-—AT=10 CENTERED IMPLICIT
X AT=| FULL [IMPLICIT

© AT=I0 FULL IMPLICIT

10

ses aiwd

50 j 60

Figure 2.
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FLOW ACROSS INTERFACE

COMPARISON OF CENTERED

FOR AT=l AND AT=IO

t=60 SEE TABLE II

1.0

X AT=1 FULL IMPLICIT

© AT=I0 FULL IMPLUCIT

IMPLICIT

AND FULL IMPLICIT DIFFERENCING

AT=1 CENTERED IMPLICIT
—-——AT=I0 CENTERED IMPLICIT

50

Figure 3.
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TABLE I

t = 30

O o o WU £ W n

-
o

Centered Implicit

Full Implicit

1.5000
1.4868
1.4576
1.4239
1.3842
1.3359
1.27k1
1.1889
1.0510
0.1518

0

at =1
1.5000
1.4868
L4576
1.k2ko
1.3842
13359
l.27h1
1.1886
1.0507
061527

0

At = 10

1.5000
1.5761
1.480k
044037
143536
1.3278
1.3021
1.2051
09586
02438

At = 1

145000
1.4866
Leb5T2
l.4232
1.3831
1.3343
1.2718
1.184L
1.0350
041882

0

at =10
1.5000
1.4850
1.4520
l.h131
13670
1.3107
1.2366
lel3hh

09545

04630

00014

2k




TABLE ITI

t = 60
Centered Implicit Full Implicit

4. at=1  at=10 ab=1  At=10
1/2 1.5000 15000 1.5000 15000
1 14903 13696 1.4903 1.4898
2 1.4694 1.4595 1.4693 1.4680
3 1.4L63 1.4635 l.Mhs61 1.i36
L 1.k203 1.4375 14200 14163
5 1+3906 1.3946 1.3901 1.3849
6 1.3557 1l.3k29 13552 1.3482
7 13134 l.311k 13127 143038
8 1.2589 1.2733 1.2580 1.2470
9 1.1806 1.1694 1.1797 1.1663
10 1.0288 1.037h 1.0278 1.0118
11 0.40ko 04140 044010 043750
12 043843 043911 043811 043540
13 043623 043623 043589 03311
14 043370 043266 0e333h 03057
15 043071 0.2835 043032 062773
16 042702 042359 042656 0e2451
17 02204 041829 042135 042093
18 00760 041202 0.1079 01700
19 ) 040353 0.0048 041257
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